The Macro-impacts of Microplastics

plastic-waste-single-use-worldwide-consumption-animals-2.ngsversion.1526443358738.adapt.1900.1.jpg
Loggerhead turtle trapped in fishing net, unable to get to the surface to breathe. Source: https://www.nationalgeographic.com/magazine/2018/06/plastic-planet-animals-wildlife-impact-waste-pollution/

The dangers of microplastics within the terrestrial world made the headlines last week when it was discovered that microplastics pass through each stage of a mosquito’s life and consequently, as birds find them to be something of a delicacy, end up in our feathered friends. However, this week it’s the impact of microplastics on the marine world that’s making waves. A group of researchers from the University of Exeter have uncovered the devastating effects of microplastics on both loggerhead and green turtles in the Mediterranean.

Microplastics, tiny pieces of plastic less than 5mm, find their way into the world’s oceans both directly, through industrial spills and runoff, and indirectly by the breakdown of macroplastics into microplastics by abrasive actions such as weathering.

Unfortunately, this plastic is now everywhere, accounting for 86% of all human-caused marine debris worldwide. Whilst we are familiar with some of the impacts of macroplastics on marine life, such as six-pack rings preventing the normal growth of an animal or carrier bags resulting in suffocation, the hidden threats of microplastics are only just beginning to surface.

image015.jpg
Source: https://blog.transitionwayland.org/projects/ban-the-plastic-bag-polystyrene-container/plastic-bag-ban/

The study conducted took place at loggerhead and green turtle nesting sites on beaches across Cyprus. Beaches which were far from industry and therefore not subject to the primary source of microplastics. Nonetheless they were found across all 17 of the sites sampled.

The nesting sites of these turtles can be found around 60cm deep in the sand, and no surprise, microplastics had made it down this far. The plastics become incorporated into the sand through alterations in the beach caused by a variety of factors including wave action and weather patterns which continually disrupt and move the sand.

Turtles have an interesting feature of reproduction in that the sex of their offspring is determined by the temperature the eggs are incubated at. Microplastics have the potential to alter this temperature, thus creating a problem. If they alter the temperature too much a certain way, then the ratio of males to females could become skewed in favour of one or the other. Too many or too few of each will make future reproduction of the species problematic.

It is not yet known the extent to which microplastics impact temperature as studies have shown it to both increase and decrease nest site temperatures. However, it is known for certain that there is at least an effect.

110729-F-OG799-014.jpegPerhaps the most troubling consequence of microplastics on turtle development is the alteration of water availability which marine turtles rely on heavily during development. Microplastics reduce the availability of water to the nesting sites by increasing the permeability of the sand. Nests then fail due to desiccation.

It has been made clear that the effects of plastic go well beyond death to an animal through entanglement or ingestion. Turtles provide just one example of the disastrous  effects of plastic. Unfortunately, due to its abundance and mobility it has the potential to infiltrate and interact with all ecosystems and species globally, giving me reason enough to conclude that it is one of the greatest threats to biodiversity today.

 

A note from the author:

The more I come to learn about the impacts of plastic on the world we were so lucky to be provided, the more I am reminded than not that we are not worthy of it. I challenge you all to try and cut out one unnecessary piece of plastic from your life this week. Whether you switch from hand soap from a plastic bottle to a bar of soap, or a regular toothbrush to one made of bamboo, as Tesco likes to say, every little really does help.

 

British Science Festival 2018

Last week I attended the British Science Festival run by the British Science Association, this year at Hull University. It was a week of wonder for all those interested in the world around them. From the secrets of the canine mind to using waste aluminium to capture carbon, there was something for everyone at this years festival.

I was fortunate enough to be attending the festival as a press intern, which meant reporting on all things festival. The experience itself was inspiring but better than that, it was an opportunity to learn.

Out of the many scientific revelations I discovered over the week one of the most interesting to me was about the future of medical technology. I was given the opportunity to write a blog post on my findings so I thought I’d share that with you this week. If you’re interested in hearing about other festival events and activities don’t forget to check out the British Science Associations website!

So here goes…

British Science Festival – The robot will see you now: the future of medical technology

by Alicia Shephard, British Science Festival

From iPads to space travel, robots to facetime, many of the predictions of A 2001 Space Odyssey have materialised in society over the past 50 years. However, one prediction you might have missed is metabolic monitoring during intensive care. This is something which is soon to become a reality thanks to the pioneering work of British Science Festival Award Lecture, Gemma Bale.

Gemma’s research is helping advance diagnosis techniques for the baby brain injury known as Hypoxic Ischemic Encephalopathy (HIE), a type of brain damage which occurs when a baby’s brain doesn’t receive enough oxygenated blood.

Due to the nature of the disease, it requires immediate medical attention including an MRI scan. However, the MRI can’t be performed until the infant is a week old, leaving a large window of time for the babies’ condition to worsen.

All hope is not lost though thanks to CYRIL, a machine which is capable of using colour to identify oxygen and metabolic levels within the brain. This is enabled by the translucent property of our own body which allows red light to pass through and be absorbed by oxygenated blood cells and the enzyme responsible for using oxygen in our metabolism. This light then ‘bounces back’ for detection and is converted into measurable metabolic and oxygen levels in the brain.

The levels of these components is highly coupled with the severity of brain injury. Therefore, this research could lead to identification of brain injury before an MRI scan would occur, ultimately resulting in more rapid, specialised treatment for the infant.

So, a 50-year old prediction is finally making its way into medical technology. But what do the next 50 years hold for us? Artificial intelligence is likely to hold a lot of the answers we’re looking for.

While it might sound like scary stuff, artificial intelligence is far from it. It simply means the ability of a computer to perform a task that usually requires human intelligence. If you really boil it down, something as simple and commonplace as a calculator could be considered artificial intelligence. Not so scary now is it?

A pathologist at work (Picture: JBSA, Staff Sgt. Jerilyn Quintanilla)

As Darren Treanor, a consultant pathologist explained at The robot will see you now event: “Artificial intelligence is used in all aspects of computer science and in recent years it has become much better at doing what we can do.”

This improvement is largely thanks to new techniques of teaching computers. Rather than using standard algorithms we now use deep conditioning methods which require vast amounts of data but are far more effective.

The use of artificial intelligence within pathology is a growing field of research. Between 2009 and 2016 the number of people waiting for a diagnosis doubled and there simply aren’t enough pathologists to do the job. Whilst it’s unlikely artificial intelligence could replace the experts altogether, they could rapidly decrease wait times and improve accuracy of diagnosis.

An experiment surrounding the precision of pathologist’s diagnosis found that, when given unlimited time to detect tumours from samples of tissue, the experts were able to do so with at least 95% precision. However, when asked to complete the same task with only a minute per sample, the accuracy dropped dramatically to as low as 50%. Pathologists experience pressure just like this on a daily basis. The advantage of using artificial intelligence is that it doesn’t experience these same pressures but is still capable of achieving the same results.

The overriding consensus is this: a computer can make a diagnosis much faster than a human, and has the advantage of being unaffected by health, fatigue and emotional influences. But any work it does should always be monitored by an actual person.

Now that all sounds very reassuring, but what about the dangers of artificial intelligence getting it wrong? Not to worry: pathologists, software engineers and artificial intelligence experts alike agree that this technology should not be used alone. In its current state it’s a method of increasing rates of diagnosis.

Who knows what predictions we’ll be making in 50 years’ time, but for now improving diagnosis through innovative technology and artificial intelligence appears to be the path to take.

BIOLOGEEKS IS BACK

Kelp_Forests,_National_Museum_of_Marine_Biology_and_Aquarium_20130825.jpgBiologeeks is back! Sadly, I had to take a little break because I was studying for my undergraduate degree in Zoology and that ultimately took over my life a little. Thankfully the short break was worth it however, as I am now the proud owner of a Bachelor of Science, making myself further qualified to dissect all things biological.

Seeing as the academic year has just begun this seemed like the perfect time to put Biologeeks back into action. I’ll still be covering all aspects of biology, and the fact of the week is not going to disappear anytime soon, but there will be some exciting new developments happening so keep your eyes peeled.

If you just cant wait for that next glimpse into the biological world then check out my older posts. I look forward to creating a world of biologeeks with you!

A Breath of Not-So-Fresh Air: are e-cigarettes worse for us than we first thought?

Whilst smoking has long been a contentious issue in both science and society it is no secret that it is undoubtedly bad for you.  Despite this, many continue to smoke thanks to the addictive properties possessed by nicotine, a primary component of cigarettes.

Then in 2003 E-cigarettes were invented by a Chinese pharmacist. These electronic aids revolutionised the way we as a society smoke, and they quickly became popular especially with younger people.

xteens-and-vaping.jpg.pagespeed.ic.pLO1ASehKt

E-cigarettes work by delivering nicotine to the body as an aerosol, without the aid of tobacco or the burning process. Ordinarily when the burning process happens, it causes the incomplete burning of more than 7000 carcinogenic* compounds found in the cigarette. Since E-cigarettes don’t contain these compounds it was no wonder that they rapidly gained support and were promoted as safe.

However, a team of researchers at the New York university School of Medicine have discovered some disturbing consequences of the nicotine in e-cigarettes in a study they conducted on mice. Once inside the body, nicotine was found to undergo a transformation into substances which can damage DNA and lead to cancerous mutations.

160405_SCI_Animal-Welfare-Act.jpg.CROP.promo-xlarge2

Furthermore, the nicotine was found not only to induce cancer, but also to reduce repair activity within the vital organs of the mouse including the lung, heart and bladder. As the study was conducted on mice, which are obviously not humans, it’s easy to dissociate ourselves from this study, however, the scientists also concluded that the same damage was caused to a group of cells taken from a human lung and bladder.

It can take decades for carcinogenics to induce cancer in humans and, as e-cigarettes are a relatively new phenomenon, it could be years before there are applicable results from a human study. Despite this, the results presented by these scientists show some evidence of e-cigarette smoke being dangerous for human health and increasing the risk of developing different cancers and heart disease.

Glossary
Carcinogen – A substance capable of causing cancer

Reference
Lee, H., Park, S., Weng, M., Wang, H., Huang, W., Lepor, H., Wu, X., Chen, L. and Tang, M. (2018). E-cigarette smoke damages DNA and reduces repair activity in mouse lung, heart, and bladder as well as in human lung and bladder cells. Proceedings of the National Academy of Sciences, 115(7), pp.E1560-E1569.

Fact Of The Week

When we get cold we get goosebumps but these aren’t actually of any use to us now, they’re left over from our evolutionary ancestors. They occur when muscles at the base of each hair tense, making the hair stand up. If we had a decent covering of fur or hair this would allow air to get trapped and insulate us. However, human hair is too thin so this doesn’t work for us!

1